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Accurately Represent Start-Up Costs in the
Medium-Term Unit Commitment Problem
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Abstract—Nowadays, the changing paradigm in power systems
highlights the necessity of improving detail in energy models. The
deployment of non-dispatchable renewable energy resources that
regulators traditionally promoted, like the European Union case
and some areas of the United States, is being accelerated due to
the enhanced competitiveness of clean technologies. However, the
delay in the widespread use of non-conventional energy-storage
techniques, like batteries, is causing an increase in the variability
of the thermal-generated demand for electricity. Moreover, many
coal-fired plants are being dismantled as a result of their end-of-
life, new climate change policies, and high prices in the emissions
allowances trading markets. Meanwhile, nuclear energy remains
a backup generator but does not offer the possibility of boosting
its operational flexibility. Thereby, combined cycles gas turbines
are positioned as a key vector towards a clean energy transition,
increasing their start-up and shut-down frequency for operating
a lower number of hours than historically have done. Their fast
ramping capabilities position them as the best alternative to cover
demand peaks in the near term. Consequently, there is a growing
interest in representing these thermal units properly. This paper
exposes a great-detailed analysis of the start-up cost modeling to
accomplish future market trends. Likewise, a new mathematical
formulation of the unit commitment problem is also presented.
Finally, the formulation is compared to one of the most renowned
methodologies. Its successful performance is described in several
case studies, where authentic power-demand curves and technical
details of a gas-fired generation portfolio are handled in medium-
term horizons.

Index Terms—unit commitment, start-up cost representation,
piecewise linearization, stairwise aggregation method, medium-
term representation, power systems, electricity markets, efficient
formulation, optimization models.

NOMENCLATURE
A. Sets

g ∈ G Set of indexes of generating units.
s ∈ S Set of indexes of start-up segments.
t ∈ T Set of indexes of hourly periods of the time span.

B. Parameters

CF
g Fuel cost of unit g [$/MMBtu].

CP−M
g Linear variable production cost of unit g [$/MWh].

CP−N
g Fixed production cost of unit g [$/h].

CSD
g Shut-down cost of unit g [$].
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CSU−M
g,s Linear variable cost for the start-up type s of unit

g [$/h].
CSU−N

g,s Fixed cost for the start-up type s of unit g [$].
Dt Load demand in period t [MWh].
FP−M
g Linear variable fuel-consumption for producing

electricity of unit g [MMBtu/MWh].
FP−N
g Fixed fuel-consumption for producing electricity of

unit g [MMBtu/h].
FSD
g Shut-down fuel-consumption of unit g [MMBtu].

FSU−M
g,s Linear variable fuel-consumption for the start-up

type s of unit g [MMBtu/h].
FSU−N
g,s Fixed fuel-consumption for the start-up type s of

unit g [MMBtu].
H High value to discern in the start-up type decisions.
Pg Maximum power output of unit g [MW].
Pg Minimum power output of unit g [MW].
Rt Spinning reserve requirement in period t [MWh].
RDg Ramp-down limit of unit g [MW/h].
RUg Ramp-up limit of unit g [MW/h].
SDg Shut-down capability of unit g [MW].
SUg Start-up capability of unit g [MW].
TSU
g,s Minimum time period that unit g must be offline

for the start-up type s [h].
TDg Minimum down time of unit g [h].
TUg Minimum up time of unit g [h].

C. Variables

1) Positive and continuous variables

cPg,t Production cost of unit g in period t [$].
cSD
g,t Shut-down cost of unit g in period t [$].
cSU
g,t Start-up cost of unit g in period t [$].
hSD
g,t Number of hours that unit g has been offline in

period t [h].
hSU
g,t,s Number of hours that unit g has been offline

individualized to the segment s in which unit g
starts-up in period t [h].

pg,t Power output above the minimum output of unit g
in period t [MW].

rg,t Spinning reserve served by unit g in period t [MW].

2) Binary variables

ug,t Commitment decision of unit g in period t.
vg,t,s Start-up decision of unit g in period t and type s.
wg,t Shut-down decision of unit g in period t.

https://orcid.org/0000-0002-5868-6610
https://orcid.org/0000-0002-7675-7021
https://orcid.org/0000-0001-5919-491X
https://orcid.org/0000-0002-8438-5731


IEEE TRANSACTIONS ON POWER SYSTEMS 2

I. INTRODUCTION

THE operation trends of many power systems are currently
changing due to the high penetration of non-dispatchable

renewable energy resources. Consequently, demand variability
of electricity produced by dispatchable generators has notably
increased in recent years. Additionally, market analyses agree
on an upcoming variability increment until the widespread use
of energy-storage technologies [1]–[3].

These facts bring attention to fast-response technologies to
guarantee the security of supply. On one side, hydro generation
can solve sudden demand variations. On the other hand, water
availability is not unlimited, and its capacity can not often be
boosted in most mature power systems, where it is frequently
entirely leveraged. Therefore, fast-ramping thermal generators
are positioned as the best alternative to satisfy demand peaks
[4], as the importance of improving the operational flexibility
is gaining ground [5].

Optimizing the management of generation portfolios entails
an essential task for market players and system operators. For
that reason, there is a growing interest in increasing the detail
of energy models [6]. The unit commitment problem facilitates
an accurate representation of technical and economic aspects
of power systems. However, dealing with great detail involves
a high computational demand [7].

Accordingly, efficient formulations have continuously been
proposed in the literature [8]–[22] to enhance the performance
of commercial solvers. These tools habitually manifest a more
proficient response to certain mathematical representations of
the same modeled concern. Regarding the unit commitment, a
great variety of modeling options are available to address the
problem. Nevertheless, the utilization of Mixed Integer Linear
Programming (MILP) formulations provides one of the most
computationally-efficient resolution processes [22], [23].

Furthermore, MILP formulations guarantee the convergence
to the optimal solution in a finite number of steps [24]. This
mathematical representation requires the usage of linearization
techniques to model those features whose behavior is defined
through non-linear functions. Moreover, although the current
commercial solvers can successfully manage convex and non-
convex quadratic programs, computational execution is usually
better when these functions are linearized [25].

Nonetheless, the methodological adequacy for handling the
unit commitment problem can not be determined categorically.
Even though the application of some formulating principles is
beforehand favorable, computational efficiency is not always
predictable. It requests constant research because it is related
to the state-of-art of resolution techniques. A clear example is
[11], where some binary variables, which are difficult to solve,
are replaced by extra linear constraints in order to accelerate
the resolution process. After that, [13] employed a new version
of the solver and demonstrated that it exploits binary variables
for enhancing the branching process and generating better cuts,
improving the work on the enumeration tree and the run times.

In that way, reducing variables and constraints at most does
not always mean a resolution upgrading, nor the addition of a
vast amount of extra inequalities to tighten the problem. (Tight
formulations try to approximate the relaxed feasible region to

the integer one to speed the convergence towards the optimal
solution). The inclusion of additional variables and constraints
to eliminate integer-infeasible regions in the relaxed polytope
frequently helps the solver [26]. Nevertheless, [15] highlights
that a trade-off between tightness and compactness (avoiding
big-size relaxed problems that demand higher resolution times
and hinder the enumeration tree exploration) is mandatory.

The tight and compact formulation proposed in [16] for the
energy-based unit commitment problem offers one of the best
computational performances nowadays. This methodology has
been recently compared to other renowned formulations, like
[19]–[21], and has demonstrated its validity [21]–[23].

Naturally, some formulations respond better to certain case
studies and commercial solvers. On the one hand, literature is
plenty of case studies to test the effectiveness of the proposed
methodologies. On the other, some authors resort to the same
instances to provide a clear comparison benchmark. However,
it is very common to appreciate that either the technical detail,
demand curves, or time spans are over-simplified accordingly
to the size and complexity of real power systems.

Regarding this matter, start-up costs frequently constitute a
misrepresented feature of the unit commitment problem. As it
is analyzed in [27], most of the literature uses just one or two
start-up steps to model this operation. This approach could be
appropriate when the thermal units were started-up to generate
electricity throughout the whole week or working days. Even
so, the above-mentioned current market trends are demanding
greater modeling detail. Some recent articles present enhanced
representations of start-up features, like power trajectories and
configuration transitions [28] or dynamic ramping [29]. In any
case, there is still a gap in accurately modeling start-up costs.

The non-linear behavior of this cost, which is described by
an exponential function of the offline time prior to the start-up,
complicates the detail because of its inherent non-convexity.
Nonetheless, this limitation can be easily overcome through a
stairwise linearization [9]. In turn, technical information about
real start-up processes does not abound in the literature.

Some papers that bring parameters of the exponential curves
are [30]–[32]. These functions are often flattened to the coldest
start-up after being offline for ∼10 hours, which can be enough
for small power plants. However, real-size combined cycle gas

Unit A

Unit B

Unit C

Unit D

Fig. 1. Real start-up fuel-consumption curves of a thermal portfolio composed
of seven combined cycle gas turbine power plants, depending on the number
of hours that each unit has been offline.
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turbine facilities can last weeks in getting completely cold, as
shown in Fig. 1, where the start-up data corresponding to the
experts’ knowledge about a real thermal portfolio is illustrated.

These long start-up curves, together with the increase in the
demand variability and the necessity of combining the thermal
operation to some other issues, such as fuel purchases or hydro
management, request the extension of the horizon in the unit
commitment problem, which has been traditionally limited to
the short term due to computational requirements.

Medium-term models typically comprise one-month to three
years horizons. In those time frames, renewable generation is
subject to a high degree of uncertainty, especially at those time
steps further from the initial period. That is also the situation
of other risk variables, such as electricity demand or unplanned
power outages. In that context, efficient problem formulations
become essential when probabilistic approaches are required.

Therefore, the ongoing operational trends in power systems
with a high penetration of non-dispatchable renewable energy
resources need a more precise representation of the actual load
profiles in thermal generation. Anyhow, despite the availability
of various innovative forecasting techniques, also for the mid-
term (e.g. [33]), conservative load profiles are frequently used
when novel formulations of the unit commitment problem are
tested. Most of these methodologies use 24-hour case studies.
Nevertheless, 168-hour instances are also run in [16] and [20].

The repetition of daily-consistent demand patterns has been
usually employed in the literature to extend the time span, as

Fig. 2. The gas-fired generation in the Iberian Electricity Market in November
2020 is represented at the top on an hourly basis. Afterwards, this real profile
is scaled to a per-unit system at the bottom of the figure, and it is compared to a
daily-pattern repetition frequently used in the unit commitment literature. Both
series are illustrated in grey and yellow, respectively.

manifested in Fig. 2. Withal, this reiteration does not stress the
solver when optimizing the operation in medium- or long-term
horizons on an hourly basis. Thus, the resolution performances
of the case studies can not be computationally extrapolated to
representations of modern electricity markets.

The renowned formulation presented in [16] uses a weekly
demand curve similar to the profile illustrated in Fig. 2 except
from scaling to an 80% the load pattern at the weekend hours.
Meanwhile, the well-known formulation proposed in [20] does
not repeat a daily profile. Nonetheless, it shows a conservative
curve that does not descend from 50% of the total generation
capacity at any time. This behavior can simulate the operation
of thermal-prevalent systems where the utilities have not yet
backed the widespread deployment of renewable technologies.
Nevertheless, this circumstance contrasts the reality of modern
power systems, which request the representation of some hours
without any thermal generation, exhibiting an increment of the
start-up and shut-down processes.

This paper deals with real start-up fuel-consumption curves
and proposes a new efficient formulation to work with accurate
piecewise linearizations, instead of the conventional stairwise
representations, in Section II. Furthermore, this methodology
is compared against one of the most renowned formulations in
Section III, where a significant run time reduction is exposed
and its effectiveness to handle real demand curves in medium-
term horizons is demonstrated. Finally, conclusions are shown
in Section IV.

The main contributions of this paper are summarized in the
following list, explaining the gaps and difficulties appreciated
in the literature and the benefits of the proposed methodology:

• Piecewise functions have been usually applied in the unit
commitment problem for representing production costs
in linear optimization. This approximation imposes linear
relationships between power output and cost by bounding
generation segments. Nevertheless, the fuel consumption
dependence on offline hours leads to non-linear relations
between decision variables if the conventional piecewise
approach is implemented. To overcome these limitations,
a new mathematical formulation is presented to adequate
piecewise start-up costs to linear optimization problems.

• Different efficient equations to model start-up costs using
flexible step-functions are introduced in several renowned
formulations, like [16], [19], [20]. The approach proposed
in this paper is compared to the well-known methodology
of [16]. This approach takes equations from [16] to model
those technical features unrelated to start-up implications.
Accordingly, a rigorous analysis of the representation of
the start-up details is performed without interference from
any other modeling difference. Moreover, the formulation
is open to adding or substituting some equations to reach
a tighter and more compact problem, like the strengthened
ramping constraints declared in [34].

• The ongoing increment of the generation intermittence in
electricity markets is captured in the case studies exposed
in this article, subjecting the formulation to actual system
trends. In addition, the utilization of hourly medium-term
time spans (one-month horizons) allows dealing with real
start-up curves and accurately studying their performance.



IEEE TRANSACTIONS ON POWER SYSTEMS 4

II. METHODOLOGY

The following methodology lets a computationally efficient
representation of the start-up processes accounted by thermal
generators with high accuracy. An alternative to the traditional
stairwise linearization of start-up costs is exposed in this paper,
implementing piecewise-linear functions to model this feature.

Piecewise linearizations have been widely employed for the
representation of production costs [8]. These linearizations add
binary variables into the segments to match power output with
the corresponding piecewise block’s capacity limits, defined as
parameters. Nonetheless, the necessity of using the number of
offline hours prior to the start-up, modeled with continuous or
integer variables, must not be directly handled through binary
segments if linearity is wanted to be preserved.

For that reason, indirect relationships are developed in this
formulation to allow the application of piecewise functions to
model the start-up costs, guaranteeing that the MILP-behavior
is maintained. Besides, this publication focuses on the start-up
detail characterization in the medium-term energy-based unit
commitment problem. However, this methodology must not be
exclusively limited to that concern if an accurate operational
modeling of thermal generation is desired.

Accordingly, the formulation presented in Section II-A takes
equations from [16] as a benchmark to represent the technical
features of the thermal unit commitment problem, and substi-
tutes the start-up constraints by a new proposal. As previously
mentioned, the tight & compact methodology apparently offers
the best computational performance [23], which is wanted to
be taken advantage of in this paper.

Afterwards, Section II-B briefly describes the data curation
process to manage real fuel-consumption functions in this for-
mulation and the equivalent procedure to reach the great detail
start-up modeling parameters to be subsequently employed in
[16] when both representations are compared.

A. Mathematical Formulation of the Unit Commitment

The following formulation presents the unit commitment as
an optimization problem where the total operational cost of a
thermal portfolio is minimized. Its objective function (1) deals
with every thermal units’ production, shut-down, and start-up
costs over the time span. The technical constraints that ensure
a real operation are associated with this equation and gathered
in the subsequent subsections.

min

∑
g∈G

∑
t∈T

cPg,t + cSD
g,t + cSU

g,t

 (1)

1) Production Constraints: Firstly, a characterization of the
production cost is addressed. This feature is modeled through
a linear equation where a linear variable cost acts as slope and
a fixed cost as ordinate. The differentiation of a power output
pg,t above the technical minimum Pg , which sometimes helps
the performance of the solver, is sustained in this methodology.
The function can easily be replaced by a quadratic or piecewise
approximation, representing the production cost better. For the
sake of clarity, it has not been done, achieving a more precise
comparison in the next section.

cPg,t = ug,tC
P−N
g + (ug,tPg + pg,t)C

P−M
g ∀g, t (2)

Secondly, generation limits are represented by just a single
equation (3) when the thermal unit is not capable to start-up
and shut-down in the same hourly period (g /∈ G1), which is
described in [16], and by the equations (4) and (5) when TUg

is equal to 1 (g ∈ G1).

pg,t + rg,t ≤ ug,t(Pg − Pg)−
∑
s∈S

vg,t,s(Pg − SUg)

− wg,t(Pg − SDg) ∀g /∈ G1, t

(3)

pg,t + rg,t ≤ ug,t(Pg − Pg)

−
∑
s∈S

vg,t,s(Pg − SUg) ∀g ∈ G1, t (4)

pg,t + rg,t ≤ ug,t(Pg − Pg)

− wg,t(Pg − SDg) ∀g ∈ G1, t
(5)

Thirdly, the ramping-limit constraints that guarantee the real
operation of the thermal portfolio are modeled as follows. Note
that the beginning of the time span is shown in Appendix A.

pg,t + rg,t − pg,t−1 ≤ RUg ∀g, t ∈ [2, T ] (6)
−pg,t + pg,t−1 ≤ RDg ∀g, t ∈ [2, T ] (7)

2) Shut-down cost: This cost is closely related to the fuel
consumption during the shut-down process. It does not change
along the time horizon and is directly proportional to the fuel
price. For this reason, it is always represented as a single step
cost and frequently is obviated to simplify the problem. In this
formulation, it is considered in order to increase the accuracy.

cSD
g,t = wg,tC

SD
g ∀g, t (8)

3) Start-up cost: The start-up cost is often represented as a
single step cost or barely differentiated by two steps (hot-cold)
or even three (hot-warm-cold), [27]. As previously mentioned,
stairwise functions have been used to model this feature, and
start-up data provided in the literature commonly contemplate
fast-flattering fuel-consumption curves. Regardless, piecewise
linearizations bring an effective approach to deal with the high
accuracy characterization of the start-up functions. In this case,
different start-up phases can be represented, and the number
of offline hours can be used to discern inside the same phase.
This methodology can be leveraged to enhance the modeling
detail of real fuel-consumption curves, shown in Fig. 1. There
are several piecewise approximations. Fig. 3 illustrates a least-
squares approximation composed by three linear segments.

The proposed formulation allows using any desired number
of start-up segments. Each one is represented through a slope
and an ordinate in the cost equation (9), except the last block.
The coldest segment occurs when the curve is flat and consists
of a fixed cost that does not change with an increase in offline
hours. The value of the slope of this piece is zero.

cSU
g,t =

∑
s∈S

(
vg,t,sC

SU−N
g,s + hSU

g,t,sC
SU−M
g,s

)
∀g, t ∈ T (9)
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Fig. 3. Piecewise linearization of a real start-up fuel-consumption function.
The piecewise function exposed in this figure shows three segments, related
to a hot, warm and cold phase.

The number of hours that a thermal unit has been offline at
each period is determined through the following constraints. If
the unit is online, hSD

g,t is equal to zero. When it is shut-down,
hSD
g,t begins to increase after every period in which the unit is

de-committed. This variable can be defined as continuous, but
it acquires an integer behavior due to its direct connection to
binary variables. These equations use the parameter H , a high
value (e.g., the number of hours of a whole year) to guide the
shut-down hours’ counting. The latter objective of this Big-M
functionality is not giving an integrality behavior to continuous
variables that can be integer defined from the beginning, as is
frequent in the literature. H is applied to maintain the linearity
of the problem, while indirect relationships between decision
variables are established. For the sake of simplicity, the initial
conditions are stipulated in Appendix A.

hSD
g,t ≤ hSD

g,t−1 + 1 ∀g, t ∈ [2, T ] (10)

hSD
g,t − (1− ug,t)H ≤ 0 ∀g, t (11)

hSD
g,t−1 + 1 ≤ hSD

g,t + ug,tH ∀g, t ∈ [2, T ] (12)

Meanwhile, equation (13) determines the type of start-up s
that corresponds to the offline hours hSD

g,t , in accordance with
the parameter TSU

g,s . This constraint is not formulated for the
coldest start-up phase because the logic equation (18) assures
its assignment to vg,t,Sg

when it concerns.

vg,t,s ≤ 1 +
TSU
g,s+1 − hSD

g,t−1

H
∀g, t, s ∈ [1, Sg) (13)

Finally, the next group of constraints take the value of hSD
g,t

determined by (10-12) and assign it to the variable hSU
g,t,s. This

formulation guarantees that the offline hours hSD
g,t will be only

assigned to the corresponding start-up segment. Hence, when
a thermal unit starts-up, the variable hSU

g,t,s records the offline
hours and accounts them in the start-up cost. It is important to
note that these equations are not defined for the last segment
because the curve is flat then and there is no reason to calculate
the offline hours when the coldest start-up is activated.

hSD
g,t−1 − (1− vg,t,s)H ≤ hSU

g,t,s ∀g, t, s ∈ [1, Sg) (14)

hSU
g,t,s ≤ vg,t,sH ∀g, t, s ∈ [1, Sg) (15)

4) Balance constraints: These equations guarantee that the
demand and spinning reserve of each period t of the time span
T are plenty satisfied by the operation of the thermal portfolio.
Some papers of the literature define the balance equation (16)
as equality and add a non-served energy variable, penalized in
the objective function. This term prevents infeasibilities when
the demand curve does not fit the generation units’ technical
properties. However, it also avoids non-profitable productions
when the operational cost exceeds the penalty. For that reason,
following the security of supply energy policies, this equation
has been transformed to a greater-equal inequality, suppressing
the non-served energy term. Thus, the optimization will reduce
the energy surplus to its minimum from an economic point of
view.

Dt ≤
∑
g∈G

ug,tPg + pg,t ∀t (16)

Rt ≤
∑
g∈G

rg,t ∀t (17)

5) Operational constraints: Firstly, equation (18) fixes the
chronological relationships among the hourly periods, defining
the logic between the commitments, start-ups, and shut-downs
along the time span:

ug,t − ug,t−1 =
∑
s∈S

vg,t,s − wg,t ∀g, t ∈ [2, T ] (18)

Hereafter, the subsequent constraints ensure to accomplish
the minimum up/down hours that the generation units have to
be online/offline due to operational flexibility limitations. As
mentioned, initial conditions are specified in Appendix A.

t∑
i=t−TUg+1

∑
s∈S

vg,i,s ≤ ug,t ∀g, t ∈ [TUg, T ] (19)

t∑
i=t−TDg+1

wg,i ≤ 1− ug,t ∀g, t ∈ [TDg, T ] (20)

B. Determination of the Start-up Parameters

The start-up cost is directly related to the fuel consumption
during this operation, which is higher as the cooling processes
draw on. The above-mentioned mathematical behavior of these
curves (21) is difficult to manage in MILP formulations. Thus,
these fuel consumption functions have to be linearized through
the application of piecewise approximations or stairwise rep-
resentations.

FSU−REAL
g,t = Ag −Bg exp

(
−Cg

τ

)
(21)

The start-up representation by a stairwise formulation where
each step entails a fixed cost has been widely employed in the
literature. It shows computationally efficient results, especially
when a few steps can accurately model fast-flattering curves.
However, real data of combined cycle gas turbines, like those
presented in Appendix B and illustrated in Fig. 1, reveal longer
flattering curves. Consequently, when the time spans consider
more than the typical one day to one week on an hourly basis,
piecewise linearizations gain ground as exposed in Section III.



IEEE TRANSACTIONS ON POWER SYSTEMS 6

TABLE I
TECHNICAL DATA OF THE THERMAL UNITS.

Thermal
Unit

FP−M
g FP−N

g FSD
g FSU−M

g,hot
FSU−M

g,warm FSU−N
g,hot

FSU−N
g,warmFSU−N

g,cold
Pg Pg RDg RUg SDg SUg TDg TUg TSU

g,warm TSU
g,cold

[MMBtu/MWh] [MMBtu/h] [MMBtu] [MMBtu/h] [MMBtu/h] [MMBtu] [MMBtu] [MMBtu] [MW] [MW] [MW/h] [MW/h] [MW] [MW] [h] [h] [h] [h]

Unit A 6.6 300 1100 392.3 77.9 1517.4 3545.3 4899.2 412 157 215 215 157 157 7 7 7 18
Unit B 6.2 460 1100 42.2 9.3 1142.7 3622.2 5603.3 390 135 200 200 135 135 5 5 76 213
Unit C 5.4 820 1900 326.3 9.0 768.6 5280.0 8696.9 856 285 425 425 285 285 11 11 18 50
Unit D 6.4 320 1100 18.5 4.0 2178.3 2999.7 3648.3 402 112 200 200 112 112 6 6 57 161
Unit E 6.8 280 1200 12.6 2.8 2691.1 3505.9 4169.3 413 157 215 215 157 157 7 7 84 236
Unit F 6.2 360 1200 31.9 7.3 1846.3 4298.0 6329.5 427 163 225 225 163 163 8 8 100 279
Unit G 5.6 740 1900 25.9 5.8 4821.5 6578.8 7995.8 796 225 385 385 225 225 10 10 88 246

Piecewise linearizations can be addressed through different
approaches, like upper, lower, and mixed linear interpolation or
least-squares approximations. An analysis of the performance
of a linear-interpolant technique and an orthogonal-projection
methodology is made in [35], where it is determined that the
least-squares approximation is the most convenient method for
minimizing the error. Accordingly, the least-squares piecewise
linearization proposed in Appendix C is applied. This approach
presents the approximation as an optimization problem.

Once the slopes, ordinates, and segment intervals are deter-
mined for each thermal unit, the consumption parameters are
multiplied by the corresponding fuel price:

CSU−M
g = FSU−M

g CF
g (22)

CSU−N
g = FSU−N

g CF
g (23)

Similarly, the one-step shut-down and the linear production
consumption represented in this paper are multiplied by fuel
prices before entering the formulation. An advantage of using
fuel consumption instead of direct costs is the easy parameter-
reassignment to optimize the operation when markets change.

CSD
g = FSD

g CF
g (24)

CP−M
g = FP−M

g CF
g (25)

CP−N
g = FP−N

g CF
g (26)

Finally, in order to establish a proper comparison benchmark
to analyze the computational performance of this formulation
against the linearizations shown in the literature, both start-up
representations must report the same mean absolute percentage
error (MAPE). Hence, the step-aggregation method proposed
in [36] and enhanced in Appendix D is employed to obtain a
stairwise function from the fuel consumption curves gathered
in Appendix B.

III. CASE STUDIES AND COMPUTATIONAL PERFORMANCE

This paper proposes a computationally efficient formulation
of the unit commitment problem to improve the representation
accuracy of the start-up costs. Furthermore, to demonstrate its
validity, resolution performance is compared against the robust
methodology of [16] at several medium-term case studies.

It is important to note that the new proposal takes equations
from [16] to model those technical features unrelated to start-
up implications. Thus, a rigorous analysis of the representation
of the start-up details is performed without the interference of
any other modeling difference, making a fairer comparison.

A. Description of the Thermal Portfolio

The operation of a thermal generation portfolio composed of
7 combined cycle gas turbines placed in the Iberian Electricity
Market is optimized at the case studies presented in this paper.
Their technical parameters are gathered in Table I, except for
the start-up fuel consumption curves, whose data are provided
in Appendix B. Results of applying the least-squares piecewise
linearization presented in Appendix C also appear in Table I.
Three segments are assigned at the linearization to distinguish
between the hot, warm, and cold start-up phases. Accordingly,
the case studies closely represent the operation of real systems.

B. Description of the Medium-Term Horizons

The technical information of the thermal portfolio reveals a
long-flattering behavior when start-up curves are represented.
This fact, together with the current market trends that require
an increase in the number of start-up and shut-down processes
for the combined cycle gas turbines, demands the employment
of time spans longer than 24 hours or one week.

With this aim, medium-term horizons that comprise a whole
month on an hourly basis were selected for each case study,
allowing an in-depth analysis of operational decisions without
incurring an excessive simplification of the start-up processes.
Every month in a year is evaluated to discern seasonality and
study different market trends, like fuel prices or power-demand
curves. Regarding this concern, 2020 is selected to build the
case studies. This year constitutes a good characterization for
the generation technologies of the Iberian Electricity Market,
and reflects a rational behavior in spot and future commodity
markets. Given the location of the units, the monthly average
cost in the Iberian Gas Market (MIBGAS) is utilized as fuel
cost [37]. These data are shown in Table II.

C. Description of the Power-Demand Curves

As described in Section I, many case studies proposed in the
literature repeat a daily hourly power-demand profile to extend
the time span. Nevertheless, it does not represent medium-term
horizons properly. Hence, the historical data corresponding to
the hourly productions of all the combined cycle gas turbines
placed in the Iberian Electricity Market along 2020 [38], have
been utilized as power-demand input parameters.

This information needs to be scaled to the maximum power
output of the generation portfolio before its utilization in case
studies. Firstly, the 2020 profile is split by month. Afterwards,
the higher monthly-production peak is adjusted to reach 95%
of the portfolio’s maximum capacity, as Equation (27) defines:
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Dt =
Gas Fired Production t

max{Gas Fired Production t}
0.95

∑
g∈G

Pg (27)

Thereafter, to avoid infeasible demands that require a lower
production than the minimum power output of the least unit,
a replacement by zero-demand hours is done in this situation.
Fig. 2 illustrates the transformation of an accurate gas-fired
production profile into a power-demand curve for a combined
cycle gas turbine portfolio in a medium-term horizon.

Finally, the spinning reserve requirement is set as 5% of the
power-demand for each period t, as frequent in the literature.

D. Numerical Results of the Case Studies

As previously said, the mathematical formulation proposed
in this paper is compared against the methodology presented in
[16]. With the aim of exhibiting an accurate analysis, real start-
up functions are linearized through the approaches gathered in
Appendices C and D, reaching the same MAPE after applying
both approximations.

Likewise, medium-term horizons are established in the case
studies to deal with the increasing importance of start-up and
shut-down processes in the current electricity markets, and real
variability in power-demand curves is characterized to enhance
the scope of the representations. In accordance, twelve case
studies are evaluated. Each one corresponds to an entire month
of 2020 on an hourly basis.

They have been run in a computer Intel Core i7-8700 @3.20
GHz with 12 logical processors and 32 GB of installed RAM
memory running 64-bit Windows 10 Pro, and solved with the
commercial solver Gurobi 9.5 [39] under GAMS [40]. Due to
the big size of these problems, an aggressive presolve is set at
Gurobi options, and an optimality gap of 1.0% is chosen. The
run times are shown in Table II. It can be appreciated that
the piecewise formulation (PWF) achieves a ∼50% reduction
of the run time required by the stairwise formulation (SWF),
demonstrating its efficiency and its ability to manage a higher
detail representation.

The problem sizes with each formulation are shown in Table
III. After the application of the presolver (AP), PWF reports
∼42% constraints (#CT), ∼260% continuous variables (#CV),
∼19% binary variables (#BV), and ∼87% non-zeroes (#NZ)
when comparing to SWF. These differences are greater before
the presolve (BP). Nevertheless, the SWF dimensionality alerts
the optimization processes, which notably dedicate more time
to generate the MILP models and spend higher computational
resources at the presolve step. Therefore, tighter polytopes and
lower initial gaps are obtained with SWF.

Before the presolve phase, the dimensions of both problems
can be determined through the following equations:

• PWF constraints: according to the formulation presented
in Section II-A, the constraint quantity of each PWF case
study can be calculated as follows.

#CTPWF =
∑
t∈T

2 +
∑

g/∈G1

(
9 +

S−1∑
s

3

)
+
∑

g∈G1

(
10 +

S−1∑
s

3

)
−
∑
g∈G

(
TUg + TDg − 2− TUR

g − TDR
g

)
(28)

TABLE II
CASE STUDIES, FUEL PRICES, AND RUN TIME COMPARISONS.

Case CF
g Run Time PWF Run Time SWF Run Time PWF

[$/MMBtu] [s] [s] Run Time SWF

Jan. 3.864 552.738 1334.539 0.414
Feb. 3.138 271.364 393.331 0.690
Mar. 2.776 821.474 1842.149 0.446
Apr. 2.381 2228.233 5974.488 0.373
May 1.704 554.767 1665.991 0.333
June 2.118 229.196 712.867 0.322
July 2.160 433.626 636.259 0.682
Aug. 3.186 203.761 397.425 0.513
Sept. 3.909 210.033 771.245 0.272
Oct. 4.639 932.582 1481.440 0.630
Nov. 5.029 647.554 803.245 0.806
Dec. 6.483 1204.830 3003.471 0.401

• PWF continuous variables: this methodology defines pg,t,
rg,t, hSD

g,t , and hSU
g,t,s as continuous. It is important to note

that the last start-up segment is flat, avoiding hSU
g,t,cold.

#CVPWF =
∑
t∈T

∑
g∈G

(
3 +

S−1∑
s

1

)
(29)

• PWF binary variables: the quantity of binary variables is
easily determined by the sum of ug,t, vg,t,s, and wg,t.

#BVPWF =
∑
t∈T

∑
g∈G

2 +
∑
s∈S

1

 (30)

• SWF constraints: according to the formulation presented
in [16], the constraint quantity of each SWF case study
can be determined as follows.

#CTSWF =
∑
t∈T

2 +
∑

g/∈G1

(
8 +

S−1∑
s

1

)
+
∑

g∈G1

(
9 +

S−1∑
s

1

)
−
∑
g∈G

(
TUg + TDg − 2− TUR

g − TDR
g

)

−
∑
g∈G

S−1∑
s

(
TSU
s+1 − TD0

g

)
(31)

• SWF continuous variables: [16] just defines pg,t and rg,t.

#CVSWF =
∑
t∈T

∑
g∈G

2 (32)

• SWF binary variables: the quantity of binary variables is
given by ug,t, vg,t, wg,t, and δg,s,t, which models a start-
up decision for each step of the stairwise linearization.

#BVSWF =
∑
t∈T

∑
g∈G

3 +
∑
s∈S

1

 (33)

It is important to highlight that PWF achieves a satisfactory
representation of the start-up curves with only three segments
s. Meanwhile, SWF needs up to 38 start-up steps s to reach the
same accuracy (Appendix D). This fact implies a considerable
difference between both problem dimensions regarding binary
variables, which entail a high computational burden.

Consequently, the SWF problem size is bigger than PWF in
spite of the better performance of the presolve. In accordance,
a clear difference is appreciated when their relaxed MILPs are
solved. PWF needs ∼10 seconds to optimize its corresponding
linear programming problem, while SWF takes ∼200 seconds.
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TABLE III
CASE STUDY PROBLEM SIZES AND PERFORMANCE OF THE PRESOLVER IN BOTH FORMULATIONS.

Case
Gen. MIP #CT - BP #CV - BP #BV - BP Presolve #CT - AP #CV - AP #BV - AP #NZ - AP Initial Opt.
Model [s] (103) (103) (103) Time [s] (103) (103) (103) (103) Gap [%]

PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF

Jan. 8.8 194.0 79.5 180.7 26.0 10.4 26.0 213.5 8.7 52.5 60.7 140.7 24.4 9.8 24.3 126.9 1132.8 1249.9 28.3 26.9
Feb. 7.4 157.1 74.4 168.4 24.4 9.7 24.4 199.8 100.7 52.9 51.9 121.1 21.1 8.1 21.5 109.5 934.7 1026.5 25.6 19.5
Mar. 8.7 190.6 79.5 180.7 26.0 10.4 26.0 213.5 7.1 50.6 59.8 143.9 23.9 8.9 25.0 132.1 1121.6 1282.6 45.8 40.8
Apr. 7.9 173.0 76.9 174.5 25.2 10.1 25.2 206.6 7.6 48.8 58.4 142.4 22.5 7.7 24.6 132.2 1040.9 1284.8 61.1 52.8
May 8.5 204.6 79.5 180.7 26.0 10.4 26.0 213.5 14.4 47.7 54.6 143.0 20.1 6.8 23.5 133.5 985.2 1297.7 54.8 38.4
June 8.0 174.6 76.9 174.5 25.2 10.1 25.2 206.6 7.4 51.0 57.0 131.3 23.6 10.1 22.4 116.7 1034.1 1134.2 18.8 12.7
July 8.4 194.8 79.5 180.7 26.0 10.4 26.0 213.5 77.7 54.7 56.7 127.3 23.6 10.3 22.0 112.1 976.5 1074.7 8.7 8.4
Aug. 8.5 196.5 79.5 180.7 26.0 10.4 26.0 213.5 26.1 51.4 50.8 108.5 21.9 10.4 18.9 92.4 846.0 879.7 7.0 6.9
Sept. 7.9 178.3 76.9 174.5 25.2 10.1 25.2 206.6 9.2 54.9 52.3 121.3 21.9 10.0 20.5 106.6 924.3 1056.3 13.5 10.0
Oct. 8.7 191.8 79.5 180.7 26.0 10.4 26.0 213.5 7.8 52.0 58.1 137.4 22.6 8.2 24.0 125.7 1060.7 1214.0 34.7 25.2
Nov. 8.1 166.6 76.9 174.5 25.2 10.1 25.2 206.6 8.1 51.5 57.1 134.3 22.4 8.4 23.2 122.2 1006.9 1173.9 30.7 23.3
Dec. 8.6 190.7 79.5 180.7 26.0 10.4 26.0 213.5 6.9 50.7 58.1 142.9 21.9 6.8 25.0 133.0 1094.8 1285.3 48.7 34.4

This fact facilitates the exploration of the enumeration tree by
the PWF, visiting more nodes, establishing additional cuts, and
using extra heuristics. The resolution performances are shown
in Table IV. Most of the relaxed run time (∼83% in PWF and
∼94% in SWF) is utilized at the model generation, manifesting
the relevance of the greater compactness achieved with PWF.

There is no clear conclusion regarding the simplex iterations
to reach the optimal solution. However, it is denoted that PWF
addresses higher iterations per second than SWF. Thereupon,
it can be concluded that mapping the feasible region is easier
with PWF. Finally, it is important to note that SWF tends to
reach a lower final optimality gap, but this parameter would be
humbled if run time limits were imposed. Moreover, the better
integrality gaps obtained with SWF reveal its greater tightness.
Despite that, PWF accomplishes an improved tight & compact
trade-off from a computational efficiency perspective.

Thereafter, it is interesting to analyze the accuracy of those
results returned by the solver after optimizing both problems.
Given the application of different linearization methods in the
formulations, it is quite probable that they will not reach the
exact optimal solution. Nonetheless, quality parameters can be
established to discern the truthfulness of the start-up modeling.

The inferred decision variables after the resolution are used
to calculate their corresponding real start-up costs through the
Exponential Functions (EF) described in Appendix B. Hence,
the closer the approaches are to the EF, the more accurate the

start-up modeling is. This comparison is exposed in Table V.
As can be observed, it is frequent to reduce the start-up costs.
That is a rational behavior according to the cost-minimization
definition of the problem. However, the total cost is oversized
in some case studies. This situation is related to non-flexible
operational constraints. In that case, the solver is not capable of
choosing those segments/steps of the linearizations that reflect
an underestimated cost.

When both formulations are contrasted, an overall start-up
accuracy of 91.6% is achieved with the PWF, while SWF only
reaches 74.6%. Even though both linearization methods have
assumed the same MAPE (Appendix D), the PWF manifests a
better performance. This concern can be explained by the fitter
time dependency accomplished with piecewise functions. With
them, each offline hour is differently measured in the start-up
cost of the objective function.

In contrast, the offline hours are sometimes aggregated at the
step definitions in stairwise linearizations. The solver leverages
this consideration as a block to compute the minimal possible
start-up cost, playing with the offline hours to approximate the
last value of the intervals. This step aggregation is a significant
drawback of stairwise formulations because providing a clear
hourly distinction requires too many steps and entails compu-
tationally demanding resolution processes. For that reason, the
proposed piecewise functions to accurately model start-ups are
validated as a computationally efficient methodology.

TABLE IV
COMPUTATIONAL PERFORMANCE OF THE SOLVER WHEN OPTIMIZING THE CASE STUDIES WITH BOTH FORMULATIONS.

Case Nodes Cuts Heuristics
Simplex Simplex Iterations Nodes Relaxed MIP Final Opt. Integrality Gap
Iterations per second per second Run Time [s] Gap [%] [%]

PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF PWF SWF

Jan. 3192 1248 10059 0 38 39 691490 715173 1251 628 5.775 0.935 10.511 218.961 0.952 0.973 3.680 3.141
Feb. 3058 1 9357 3114 28 13 325336 140948 1199 600 11.269 0.003 9.001 181.084 0.999 0.911 3.235 2.807
Mar. 3351 897 10862 4273 39 25 938198 763794 1142 463 4.079 0.487 10.461 216.283 0.993 0.968 5.845 5.288
Apr. 7233 1541 10499 4239 77 30 3322514 2079339 1491 359 3.246 0.258 9.791 194.616 0.993 0.841 9.241 8.185
May 2109 697 7263 3065 24 23 705981 641866 1273 440 3.802 0.418 10.297 222.637 0.996 0.992 5.965 5.336
June 711 247 10391 4169 21 32 307149 287852 1340 536 3.102 0.346 9.761 196.191 0.835 0.926 2.355 2.121
July 3476 856 9464 3355 21 26 423812 336271 977 764 8.016 1.345 10.365 214.005 0.980 0.949 1.998 1.814
Aug. 1588 1 8289 3413 16 13 312987 154717 1536 775 7.793 0.003 10.085 213.293 0.595 0.874 1.617 1.771
Sept. 3759 703 10299 3871 53 33 466251 499006 2220 843 17.897 0.912 9.659 202.246 0.981 0.970 2.232 2.161
Oct. 3469 1156 9303 3681 52 38 832666 698839 893 542 3.720 0.780 10.567 216.312 0.995 0.937 4.442 3.952
Nov. 3812 398 11066 3753 52 26 728339 356489 1125 561 5.887 0.495 9.846 191.333 0.994 0.969 3.945 3.216
Dec. 3910 1733 9192 3385 80 37 912872 1281967 758 456 3.245 0.577 10.628 222.177 0.992 0.963 6.120 5.298
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IV. CONCLUSIONS

Ongoing trends in electricity markets demand an increase in
the detail of energy models. The demand-variability increment
caused by the high penetration of non-dispatchable renewable
energy resources positions fast-ramping thermal units as a key
vector towards a clean energy transition.

Accordingly, an adaptation of their operation is required to
meet the new demand-profiles, starting-up, and shutting-down
with a greater frequency for producing during less time. With
this regard, the unit commitment problem is a powerful tool
to optimize the operation of generation units.

Nevertheless, the modeling accuracy of these operations is
frequently oversimplified in the literature. Low detail in start-
up costs and unrealistic power-demand curves are still utilized
nowadays to reduce the computational burden of this complex
problem. Hence, a computationally efficient formulation where
an accurate representation of the start-up processes is allowed
is proposed in this paper.

This approach replaces the conventional stairwise modeling
of the unit commitment’s start-up costs with a more qualified
piecewise formulation, establishing an original set of equations
that ensure keeping the linearity of the problem. The validity
of this methodology has been demonstrated by its comparison
to one of the most renowned formulations of the literature. In
turn, several case studies that characterize the reality of current
power systems are presented.

The operation of a thermal portfolio composed of combined
cycle gas turbines is optimized in medium-term case studies on
an hourly basis, where the importance of properly representing
start-up and shut-down processes is manifested. If desired, this
methodology can also be utilized as a basis to model any other
important feature of the operation of electricity markets, such
as considerating optimal power flow constraints, configuration
transitions, dynamic ramping, or incorporating uncertainty.

Furthermore, real demand curves that boost computational
requirements are employed. To conclude, numerical results are
exposed to clearly illustrate the effectiveness of the resolution
performance achieved with the proposed formulation. Utilizing
this methodology provides a notable reduction of the run time,
allowing a higher detail representation in the unit commitment.
Moreover, the start-up costs determined at the optimization are
closer to those calculated with real exponential curves, proving
the superior accuracy of the proposed MILP formulation.

TABLE V
COMPARISON OF THE LINEARIZED START-UP COSTS TO THEIR

CORRESPONDING VALUES DETERMINED BY EXPONENTIAL CURVES.

Case
PWF EFPWF PWF SWF EFSWF SWF
[k$] [k$] EFPWF [k$] [k$] EFSWF

Jan. 606.374 769.197 0.788 585.714 759.367 0.771
Feb. 479.237 607.112 0.789 497.718 746.049 0.667
Mar. 317.564 229.352 1.385 344.664 347.185 0.993
Apr. 290.178 350.128 0.829 281.097 377.914 0.744
May 190.657 127.989 1.490 197.651 171.183 1.155
June 245.305 305.863 0.802 266.509 397.000 0.671
July 244.337 328.902 0.743 251.941 470.006 0.536
Aug. 344.739 525.280 0.656 404.640 790.722 0.512
Sept. 448.824 489.091 0.918 498.744 721.140 0.692
Oct. 799.672 857.763 0.932 790.249 990.018 0.798
Nov. 945.262 1097.767 0.861 932.422 1268.829 0.735
Dec. 1148.967 1442.916 0.796 1095.890 1609.232 0.681

TABLE VI
INITIAL CONDITIONS OF THE THERMAL UNITS.

Thermal Unit P 0
g [MW] TD0

g [h] TU0
g [h] U0

g

Unit A 314 0 7 1
Unit B 270 0 5 1
Unit C 570 0 11 1
Unit D 224 0 6 1
Unit E 314 0 7 1
Unit F 326 0 8 1
Unit G 450 0 10 1

APPENDIX

A. Initial Conditions

The optimization behavior at the beginning of the time span
is defined by the initial conditions of the thermal units. Hence,
the following parameters and equations determine the correct
operation modeling along the first periods of the horizon.

P 0
g Power output of unit g in the first period t [MW].

TD0
g Offline hours of unit g in the first period t [h].

TDR
g Number of hours that unit g must remain offline [h].

TU0
g Online hours of unit g in the first period t [h].

TUR
g Number of hours that unit g must remain online [h].

U0
g Commitment status of unit g in the first period t.

1) Initial minimum up and down times: At the initial time
period of the horizon, the number of online/offline hours that
each thermal unit accounts need to be processed to determine
the interval within their commitment status should not change.
These parameters are calculated before the optimization:

TUR
g = max{0, (TUg − TU0

g )U
0
g } ∀g (34)

TDR
g = max{0, (TDg − TD0

g)(1− U0
g )} ∀g (35)

Afterwards, they are employed to guarantee the invariability
of the commitment status and keep the logic in chronological
relationships between time periods.

ug,t = U0
g ∀g, t ∈ [1, TUR

g + TDR
g ] (36)

ug,t − U0
g =

∑
s∈S

vg,t,s − wg,t ∀g, t ∈ [1, 2) (37)

2) Initial shut-down hours: Accordingly to the initial status
of the minimum down time, the value of the number of hours
that each unit has been offline in the first period of the horizon
is determined through the following equations.

hSD
g,t ≤ TD0

g + 1 ∀g, t ∈ [1, 2) (38)

TD0
g + 1 ≤ hSD

g,t + ug,tH ∀g, t ∈ [1, 2) (39)

3) Initial ramping limits: The initial ramping capability of
the thermal units is characterized by their power output at the
beginning of the represented time span.

pg,t + rg,t − (P 0
g − U0

gPg) ≤ RUg ∀g, t ∈ [1, 2) (40)

−pg,t + (P 0
g − U0

gPg) ≤ RDg ∀g, t ∈ [1, 2) (41)

The technical information about the initial conditions of the
thermal portfolio presented in this paper is shown in Table VI.
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TABLE VII
START-UP FUEL-CONSUMPTION PARAMETERS.

Thermal Unit Ag [MMBtu] Bg [MMBtu] Cg [h]

Unit A 4900 3820 5
Unit B 5630 4830 67
Unit C 8705 8640 15
Unit D 3654 1590 50
Unit E 4180 1600 75
Unit F 6374 4860 90
Unit G 8020 3440 78

B. Fuel-Consumption Function Data

The start-up cost of a thermal unit is directly related to the
fuel consumption during this process, which is mathematically
described through an exponential function of the offline time
prior to the start-up. This behavior is defined in equation (21),
whose parameters for the generation portfolio presented in this
paper are gathered in Table VII.

These curves are illustrated in Fig. 1, where it is appreciated
an increase in fuel consumption as the facility cools down and
reaches ambient temperature. Nomenclature is exposed below.
Note that there is a slight difference between the value reported
by equation (21) and those provided by the piecewise and the
stairwise linearizations, which is measured through the MAPE
reached along the whole hours of each time span.

FSU−REAL
g,t Real start-up fuel-consumption [MMBtu].

Ag First parameter of the function [MMBtu].
Bg Second parameter of the function [MMBtu].
Cg Third parameter of the function [h].
τ Offline hours before the start-up [h].

C. Piecewise Linearization Method

According to [35], the best procedure to perform a piecewise
linearization is utilizing a least-squares approximation. For the
sake of simplicity, a numerical calculation is proposed in this
paper instead of appealing to analytical approaches. It consists
of an optimization problem. The fuel consumption information
determined with equation (21) is introduced as a target in the
objective function (42), where a least-squares minimization is
applied. Constraints (43)-(50) establish the linearization rules,
in which yt, mt and nt are defined as positive continuous
variables, m̃t and ñt as binary, and NPW as a parameter.

yt Forecasted fuel-consumption in period t [MMBtu].
mt Slope value in period t [MMBtu/h].
m̃t Variation of the slope value in period t.
nt Ordinate value in period t [MMBtu].
ñt Variation of the ordinate value in period t.
NPW Number of segments in the piecewise linearization.

The following method is suitable for obtaining a piecewise
linearization of any exponentially growth-decreasing function,
like a start-up fuel consumption curve. Constraints are specif-
ically formulated taking advantage of their previously-known
behavior.

• Equation 43 assures that the calculated segments of the
piecewise function are linear.

• Equation 44 assures a decreasing behavior for the slopes
of the segments that integrate the piecewise function.

• Equation 45 assures an increasing trend for the ordinates
of the segments that integrate the piecewise function.

• Equation 46 assures that the slope-variation identifier m̃t

registers a value of 1 if the slope changes from one hour
to another.

• Equation 47 assures that the ordinate-variation identifier
ñt registers a value of 1 if the ordinate changes from one
hour to another.

• Equation 48 assures that an ordinate variation in period
t entails a slope variation in the same period.

• Equation 49 establishes a logical constraint. The number
of slope variations and ordinate variations is lower than
the number of segments minus one.

• Equation 50 assures that the slope of the last segment of
the piecewise function is equal to zero, according to the
curve flattening when the coldest start-up is reached.

min

(∑
t∈T

(
FSU−REAL
t − yt

)2)
(42)

subject to

yt = nt +mt

t∑
i=1

i ∀t (43)

mt ≤ mt−1 ∀t ∈ [2, T ] (44)
nt−1 ≤ nt ∀t ∈ [2, T ] (45)

mt−1 −mt

H
≤ m̃t ∀t ∈ [2, T ] (46)

nt − nt−1

H
≤ ñt ∀t ∈ [2, T ] (47)

ñt − m̃t ≤ 0 ∀t (48)∑
t∈T

m̃t ≤ NPW − 1 ∀t (49)

mt ≤ H

(
NPW − 1−

t∑
i=1

m̃i

)
∀t (50)

In order to help the solver to find the optimal solution of
this MIQCP problem, the value or the ordinate during the first
time period is initialized as follows, nt1 = FSU−REAL

t1 . This
initialization is not an equation that belongs to the formulation.
It is just a previous assignment, and its accomplishment is not
mandatory. Actually, when the results of the optimization are
obtained, the real value of nt1 differs from this starting point.

D. Stairwise Aggregation Method

When a stairwise approximation is employed to represent an
exponentially growth-decreasing curve in the unit commitment
literature, it is not common to mention what methodology has
been used to determine the corresponding steps. Nevertheless,
an aggregation algorithm is described in [36]. It calculates the
most representative aggregated steps according to a predefined
error tolerance. Its nomenclature is exposed below:

FSU
g,s Forecasted fuel-consumption for start-up s [MMBtu].

Ig Error tolerance for the start-up step aggregation [%].
ta Initial time period for a start-up step [h].
tb Final time period for a start-up step [h].
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Algorithm 1: Start-up step aggregation methodology.

g ← thermalUnit;
ta, tb, s← 1;
while ta ≤ |T | do

while tb + 1 ≤ |T | ∧ error (g, ta, tb + 1) ≤ Ig do
tb ← tb + 1;

TSU
g,s ← ta;

if ta = tb then
FSU
g,s ← FSU−REAL

g,ta ;
ta ← ta + 1;

else
FSU
g,s ← step (g, ta, tb);

ta ← tb + 1;

tb ← tb + 1;
s← s+ 1;

This paper proposes a modified version of this algorithm in
order to not aggregate hourly steps when the tolerance is not
satisfied. In that case, the real fuel consumption data are kept
during the corresponding time period. On the other side, when
the tolerance is accomplished, the iterative algorithm begins a
step aggregation until this error limit is reached. Then, optimal
step values are calculated as it is done in [36], where equations
(51) and (52) are presented.

error (g, ta, tb) =
FSU−REAL
g,tb

− FSU−REAL
g,ta

FSU−REAL
g,tb

+ FSU−REAL
g,ta

∀g, t (51)

step (g, ta, tb) =
2FSU−REAL

g,tb
FSU−REAL
g,ta

FSU−REAL
g,tb

+ FSU−REAL
g,ta

∀g, t (52)

Algorithm 1 together with equations (51) and (52) are used
to determine the necessary start-up parameters for the stairwise
linearization of [16]. At this stage, the formulation proposed in
this paper can be compared to [16]. As previously mentioned,
both units’ start-up linearizations must report the same MAPE
to perform an accurate comparison.

MAPEg =
1

T

∑
t∈T

∣∣∣∣∣FSU−REAL
g,t − F ∗

g,t

FSU−REAL
g,t

∣∣∣∣∣ (53)

Therefore, Ig data are tested in the algorithm 1 and equation
(53) until reaching the same modeling detail that is obtained
in the three-segment piecewise linearization. Note that F ∗

g,t is
equivalent to yt in the piecewise linearization, and to the FSU

g,s

that corresponds to each period t of the evaluated monthly time
span for the stairwise linearization. It is exposed in Table VIII.

TABLE VIII
MEAN ABSOLUTE PERCENTAGE ERRORS MADE IN THE LINEARIZATIONS.

Thermal Unit MAPEPW
g Ig [%] # Steps MAPESW

g

Unit A 0.001 0.250 21 0.001
Unit B 0.011 2.150 36 0.011
Unit C 0.003 0.775 35 0.005
Unit D 0.004 0.700 33 0.004
Unit E 0.004 0.550 38 0.003
Unit F 0.011 2.750 24 0.011
Unit G 0.005 1.000 26 0.005
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